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Abstract
By introducing a new transformation, a new direct and unified algebraic
method for constructing multiple travelling wave solutions of general nonlinear
evolution equations is presented and implemented in a computer algebraic
system, which extends Fan’s direct algebraic method to the case when r > 4.
The solutions of a first-order nonlinear ordinary differential equation with a
higher degree nonlinear term and Fan’s direct algebraic method of obtaining
exact solutions to nonlinear partial differential equations are applied to the
combined KdV–mKdV–GKdV equation, which is derived from a simple
incompressible non-hydrostatic Boussinesq equation with the influence of
thermal forcing and is applied to investigate internal gravity waves in the
atmosphere. As a result, by taking advantage of the new first-order nonlinear
ordinary differential equation with a fifth-degree nonlinear term and an eighth-
degree nonlinear term, periodic wave solutions associated with the Jacobin
elliptic function and the bell and kink profile solitary wave solutions are
obtained under the effect of thermal forcing. Most importantly, the mechanism
of propagation and generation of the periodic waves and the solitary waves is
analysed in detail according to the values of the heating parameter, which show
that the effect of heating in atmosphere helps to excite westerly or easterly
propagating periodic internal gravity waves and internal solitary waves in
atmosphere, which are affected by the local excitation structures in atmosphere.
In addition, as an illustrative sample, the properties of the solitary wave solution
and Jacobin periodic solution are shown by some figures under the consideration
of heating interaction.
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1. Introduction

Gravity waves in the atmosphere are a subject of broad interest and play a significant role
in weather and climate, such as the rainstorm of typhoons, orographic precipitation and
atmospheric circulation [1, 2]. One important mechanism of gravity wave production and
propagation in the atmosphere is that the airflow response to a transient heat source, which
plays a key role in the generation and propagation of internal gravity waves in the atmosphere
[3, 4]. One fundamental object of research on wave phenomena is to search for travelling
wave solutions [5–11]. Many methods to construct exact solutions of nonlinear wave equations
have been established and developed, such as the Bäcklund transformation [12–14], Hirota’s
bilinear method [15–17], tanh-function method [18–24], extended tanh-function method
[25, 26], variational iteration methods [27, 28], collocation method [29–31], Adomian Padé
approximation [32], inverse scattering method [13, 33], Darboux transformation [34–38] and
so on. Very recently, the F-expansion [39, 40], auxiliary equation [41–43], Fan’s sub-equation
[44, 45], modified extended Fan’s sub-equation methods [46], which are straightforward and
effective, were proposed for constructing periodic wave solutions for some nonlinear evolution
equations.

The aim of this paper is to consider the first-order nonlinear ordinary differential equation
(ODE) with a higher degree nonlinear term

dϕ

dξ
= ε

√√√√ r∑
j=0

cjϕj (1.1)

and with a lower degree nonlinear term

dφ

dξ
= ε

√√√√ s∑
j=0

cjφj , (1.2)

where ε = ±1, r > 4, s < r and cj (j = 0, 1, . . . , r) are constants.
In fact, when we make a transformation

ϕ → φ(s−2)/(r−2) (1.3)

for equation (1.1) and next specify the coefficients cj (j = 0, 1, . . . , r), then equation (1.1) is
reduced to equation (1.2).

For example, based on Fan’s sub-equation method a first-order ODE with a fourth-degree
nonlinear term [47–54] is considered, namely

dϕ

dξ
= ε

√
c0 + c1ϕ + c2ϕ2 + c3ϕ3 + c4ϕ4, (1.4)

where we choose s = 4 in equation (1.3). If we make a transformation

ϕ → φ2/(r−2), (1.5)

then equation (1.1) is reduced to equation (1.4). If r = 5, when we make a transformation
ϕ → φ2/3, then the following first-order ODE with a fifth-degree nonlinear term

dϕ

dξ
= ε

√
c0 + c1ϕ + c2ϕ2 + c3ϕ3 + c4ϕ4 + c5ϕ5 (1.6)

can be reduced to equation (1.4).
The rest of this paper is organized as follows: in section 2, we derive the mathematical

model from the incompressible non-hydrostatic Boussinesq equation, which governs the
internal gravity waves in the atmosphere; in section 3, we apply the auxiliary equation method
to find various periodic and solitary wave solutions of internal waves, which is used to explain
the effect of heat on gravity waves in the atmosphere; in section 4, some conclusions are given.
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2. Derivation of the KdV–mKdV–GmKdV equation

Consider the following two-dimensional nonlinear incompressible non-hydrostatic Boussinesq
equation [55, 56], which consists of the nonlinear horizontal momentum equation, mass
continuity equation and the nonlinear thermodynamic equation:

∂u

∂t
+ u

∂u

∂x
+ �

∂u

∂z
= − 1

ρ

∂p′

∂x
(2.1a)

∂�

∂t
+ u

∂�

∂x
+ �

∂�

∂z
= − 1

ρ

∂p′

∂z
+ B (2.1b)

∂ρ ′

∂t
+ u

∂ρ ′

∂x
− ρ�

N2

g
= Q (2.1c)

∂u

∂x
+

∂�

∂z
= 0, (2.1d)

where u and � are the velocities, N is the buoyancy frequency per mass unit, p′ represents
the perturbation pressure and B = −g

ρ ′
ρ

denotes the buoyancy with ρ denoting the density, g

denoting the gravitational acceleration and ρ ′ representing the perturbation density.
Introducing the transformations

u(x, z, t) = u(ξ), �(x, z, t) = �(ξ), p′(x, z, t) = p(ξ),

ρ ′(x, z, t)

ρ(x, z, t)
= π(ξ), ξ = kx + nz − wt

(2.2)

where w represents an angular frequency, and �K = (k, n) denotes the wave vector, we can
rewrite equation (2.1) as

(−w + ku + n�)
du

dξ
= − k

ρ

dp

dξ
(2.3a)

(−w + ku + n�)
d�

dξ
= −n

ρ

dp

dξ
− gπ (2.3b)

(−w + ku)
dπ

dξ
− N2

g
� = Q (2.3c)

k
du

dξ
+ n

d�

dξ
= 0. (2.3d)

Integrating equation (2.3d) with respect to ξ once and taking the integration constant as
zero, one can get

� = −ku

n
. (2.4)

Substitution of equation (2.4) into equation (2.3) yields

d2u

dξ 2
+

k2N2u

w(k2 + n2)(w − ku)
− kngQ

ρw(k2 + n2)(w − ku)
= 0. (2.5)

If u � w
k

, then F(u) = 1
w−ku

can be expanded as

F(u) = 1

w − ku
= 1

w

(
1 +

ku

w
+

k2u2

w2
+

k3u3

w3
+ · · ·

)
. (2.6)
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Neglecting high power terms in the polynomial of F(u), if we choose that

d2u

dξ 2
+

k2N2u

w2(k2 + n2)

(
1 +

ku

w
+

k2u2

w2
+

k3u3

w3

)
− kngQ

ρw2(k2 + n2)

(
1 +

ku

w
+

k2u2

w2

)
= 0, (2.7)

then we can reduce equation (1.5) to

d2u

dξ 2
+

k5N2u4

ω5(k2 + n2)
+

k4N2u3

ω4(k2 + n2)
+

k3(N2ρω − Qgn)u2

(k2 + n2)ρω4

+
k2(N2ρω − Qgn)u

ω3(k2 + n2)ρ
− Qgnk

ω2(k2 + n2)ρ
= 0. (2.8)

Differentiating equation (2.8) once with respect to ξ leads to

d3u

dξ 3
+

4k5N2u3

ω5(k2 + n2)

du

dξ
+

3k4N2u2

ω4(k2 + n2)

du

dξ

+
2k3(N2ρω − Qgn)u

(k2 + n2)ρω4

du

dξ
+

k2(N2ρω − Qgn)

ω3(k2 + n2)ρ

du

dξ
= 0, (2.9)

which is the ordinary differential equation that the generalized combined KdV–mKdV–
GmKdV equation corresponds to.

3. Solutions to the KdV–mKdV–GmKdV equation

Let us now focus our attention on equation (2.9) and introducing the transformations,
equation (2.9) is generated as

d3u

dξ 3
+ (c + αu + βu2 + γ u3)

du

dξ
= 0, (3.1)

in which

α = 2k3(ρωN2 − ngQ)

(k2 + n2)ρω4
, β = 3k4N2

ω4(k2 + n2)
,

γ = 4k5N2

ω5(k2 + n2)
, c = k2(ρωN2 − ngQ)

ρω3(k2 + n2)
.

(3.2)

If we let

u =
n∑

i=1

aiϕ
i (3.3)

with ϕ satisfying

dϕ

dξ
= ε

√√√√ r∑
j=0

cjϕj , (3.4)

we can conclude that r = 3n + 2 through balancing terms u3 du
dξ

and d3u
dξ 3 in equation (3.1). Not

losing generality, when we choose n = 1 and r = 5, we can set u = a0 +a1ϕ with ϕ satisfying

dϕ

dξ
= ε

√
c0 + c1ϕ + c2ϕ2 + c3ϕ3 + c4ϕ4 + c5ϕ5 (3.5)

and when we take n = 2 and r = 8, we can set u = a0 + a1ϕ + a1ϕ
2 with ϕ satisfying

dϕ

dξ
= ε

√
c0 + c1ϕ + c2ϕ2 + c3ϕ3 + c4ϕ4 + c5ϕ5 + c6ϕ6 + c7ϕ7 + c8ϕ8. (3.6)
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3.1. The first-order ODE with a fifth-degree nonlinear term

With the aid of Maple9, substitution of equation (3.5) into equation (3.1) shows that the set of
algebraic equation possesses the solution

c5 = −γ a3
1

10
, c4 = −γ a0a

2
1

2
− βa2

1

6
, c2 = −αa0 − c − γ a3

0 − βa2
0,

(3.7)
c3 = −2βa0a1

3
− αa1

3
− γ a2

0a1,

where a1 �= 0, a0, c and c0 are arbitrary constants.
Considering the seven parameters ai (i = 0, 1) and cj (j = 0, 1, . . . , 5), especially the γ

parameter, we present some types of solutions in the following cases.

Case 1. If γ = 0, then equation (3.1) is reduced to the well-known combined KdV–mKdV
equation, and equation (3.5) takes in the form

dϕ

dξ
= ε

√
c0 + c1ϕ + c2ϕ2 + c3ϕ3 + c4ϕ4. (3.8)

If we choose a0 = − α
2β

in equation (3.7), then c4 �= 0, c3 = 0; we have the following
solutions to equation (3.1):

u1 = − α

2β
+

√
6(α2 − 4βc)

2β
sech

⎛
⎝

√
α2 − 4βc

4β
ξ

⎞
⎠ , (3.9)

where it requires that α2 − 4βc > 0 and β > 0, so these solutions must satisfy the condition

n2g2Q2 − 2ρ2w2N4 + ρwN2ngQ > 0, N2 > 0, (3.10)

which tells us that in the stable atmosphere (N2 > 0), heating (Q > 0) helps to generate
upward-propagating waves, but cooling (Q < 0) helps to generate downward-propagating
waves.

From equation (2.4), we have that the slope of lines of constant phase in the x–z plane is

dz

dx
= − k

n
. (3.11)

Considering equations (3.10) and (3.11), it is not difficult to see that in the stable
atmosphere (N2 > 0), heating (Q > 0) helps to generate westerly propagating waves if
the slope of lines of constant phase is positive, and heating (Q > 0) helps to generate easterly
propagating waves if the slope of lines of constant phase is negative.

However, in the stable atmosphere (N2 > 0), cooling (Q < 0) helps to generate easterly
propagating waves if the slope of lines of constant phase is positive and cooling (Q < 0) helps
to generate westerly propagating waves if the slope of lines of constant phase is negative.
Figure 1 shows the propagating behaviour in qualitative terms

u2 = − α

2β
+

1

2β

√
4βc − α2

2
tanh

⎛
⎝

√
4βc − α2

8β
ξ

⎞
⎠ , (3.12)

where it requires that α2 − 4βc < 0 and β > 0; so these solutions must satisfy the condition

n2g2Q2 − 2ρ2w2N4 + ρwN2ngQ < 0, N2 > 0, (3.13)

which tells us that in the stable atmosphere (N2 > 0), heating (Q > 0) helps to generate
downward-propagating waves, but cooling (Q < 0) helps to generate upward-propagating
waves.

5
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(a) (b)

(c) (d )

Figure 1. Propagation direction of solitary wave u1 (equation (3.9), where N2 = 0.2, k =
1, n = −1, ω = 2) for (a) easterly Q = −0.1, (b) downward Q = −0.1, (c) westerly Q = 0.1,
(d) upward Q = 0.1.

Equations (3.10) and (3.13) show that in the stable atmosphere (N2 > 0), heating (Q > 0)

helps to generate easterly propagating waves if the slope of lines of constant phase is positive,
and heating (Q > 0) helps to generate westerly propagating waves if the slope of lines of
constant phase is negative.

However, cooling (Q < 0) helps to generate westerly propagating waves if the slope of
lines of constant phase is positive, and cooling (Q < 0) helps to generate easterly propagating
waves if the slope of lines of constant phase is negative:

u3 = − α

2β
−

√
6√−βξ

, α2 − 4βc = 0, β < 0, (3.14)

where it requires that n2g2Q2 − 2ρ2w2N4 + ρwN2ngQ = 0 and N2 < 0. In this case, there
are no waves in unstable atmosphere:

u4 = − α

2β
+

m

2β

√
6(α2 − 4βc)

2m2 − 1
cn

⎛
⎝

√
α2 − 4βc

4β(2m2 − 1)
ξ

⎞
⎠ , (3.15)

where it requires that α2 − 4βc > 0 and β > 0; so these solutions must satisfy the condition

n2g2Q2 − 2ρ2w2N4 + ρwN2ngQ > 0, N2 > 0, (3.16)

which tells us that in the stable atmosphere (N2 > 0), heating (Q > 0) helps to generate
upward-propagating periodic waves, but cooling (Q < 0) helps to generate downward-
propagating periodic waves.

From equations (3.10) and (3.16) we see that in the stable atmosphere (N2 > 0), heating
(Q > 0) helps to generate westerly propagating periodic waves if the slope of lines of constant
phase is positive, and heating (Q > 0) helps to generate easterly propagating periodic waves
if the slope of lines of constant phase is negative.

6
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(a) (b)

(c) (d )

Figure 2. Propagation of periodic wave u4 (equation (3.15), where N2 = 0.2, k = 1, n =
−1, ω = 2) for (a) easterly Q = −0.1, (b) downward Q = −0.1, (c) westerly Q = 0.1,
(d) upward Q = 0.1.

However, cooling (Q < 0) helps to generate easterly propagating periodic waves if
the slope of lines of constant phase is positive, and cooling (Q < 0) helps to generate
westerly propagating periodic waves if the slope of lines of constant phase is negative. The
corresponding propagating behaviour is given in figure 2:

u5 = − α

2β
+

m

2β

√
4βc − α2

m2 + 1
sn

⎛
⎝

√
4βc − α2

4β(m2 + 1)
ξ

⎞
⎠ , (3.17)

where it requires that α2 − 4βc < 0 and β > 0; so these solutions must satisfy the condition

n2g2Q2 − 2ρ2w2N4 + ρwN2ngQ < 0, N2 > 0, (3.18)

which tells us that in the stable atmosphere (N2 > 0), heating (Q > 0) helps to generate
downward-moving periodic waves, but cooling (Q < 0) helps to generate upward-moving
periodic waves.

From equations (3.10) and (3.18), it is not difficult to see that in the stable atmosphere
(N2 > 0), heating (Q > 0) helps to generate easterly moving periodic waves if the slope of
lines of constant phase is positive, and heating (Q > 0) helps to generate westerly moving
periodic waves if the slope of lines of constant phase is negative. However, cooling (Q < 0)

helps to generate westerly moving periodic waves if the slope of lines of constant phase is
positive, and cooling (Q < 0) helps to generate easterly moving periodic waves if the slope
of lines of constant phase is negative. In addition, when m → 1, u4 is reduced to u1 and u5 is
reduced to u2.

Case 2. If γ = 0, we set u = a0 + ϕ and take equation (3.5) in the form

dϕ

dξ
= ε

√
c0 + c2ϕ2 + c4ϕ4, (3.19)

7



J. Phys. A: Math. Theor. 41 (2008) 145206 L Zi-Liang

which has the Weierstrass elliptic function solution

u6 = − α

2β
+

√
α2 − 4βc

2β2
− 6

β
℘(ξ ; g2, g3), (3.20)

where

g2 = 4

3

(
α2

4β
− c

)2

+
2βc0

3
, g3 = − 8

27

(
3α2

4β
− c

)3

− 2βc0

9
, (3.21)

u7 = − α

2β
+ 2

√
3

√
c0β

12℘(ξ ; g2, g3)β − (α2 − 4βc)
, (3.22)

in which g2 and g3 satisfy equation (3.21)

u8 = − α

2β
+

√√√√12c0℘(ξ ; g2, g3) + 2c0
(

α2−4cβ

2β
+ D

)
12℘(ξ ; g2, g3) + D

, (3.23)

where

g2 = (−α2 + 4cβ)(10Dβ + 2α2 − 8cβ − 11c0β
2)

96β2
, (3.24)

g3 = 7Dα4

1152β2
− 7Dα2c

144β
+

7Dc2

72
+

7c0βD

144
+

5α6

3456β3
− 5α4c

288β2

+
5α2c2

72β
− 5c3

54
+

c0α
2

192
− cc0β

48
(3.25)

D = 5(−α2 + 4cβ)

8β
+

1

8

√
9(−α2 + 4cβ)2

β2
+ 96βc0 (3.26)

u9 = − α

2β
− 1

12

√
c0(−24℘(ξ ; g2, g3)β + 4cβ − α2)

β
(

∂
∂ξ

℘ (ξ ; g2, g3)
) , (3.27)

where

g2 = (4cβ − α2)2

192β2
− c0β

6
, g3 = (4cβ − α2)

864β

(
6c0β +

(4cβ − α2)2

16β2

)
, (3.28)

u10 = − α

2β
+

12
√

6
√−β ∂

∂ξ
℘ (ξ ; g2, g3)

24℘(ξ ; g2, g3)β − 4cβ + α2
, (3.29)

in which g2 and g3 satisfy equation (3.28). In this case, ℘(ξ ; g2, g3) in the solutions u6 to u10

is the Weierstrass elliptic function.

Case 3. If γ �= 0, when we make a transformation ϕ → ϕ2/3 for equation (3.5), then
equation (3.5) is reduced to

dϕ

dξ
= 3

2
ε
√

c0ϕ2/3 + c1ϕ4/3 + c2ϕ2 + c3ϕ8/3 + c4ϕ10/3 + c5ϕ4. (3.30)

Suppose that c0 = c1 = c3 = c4 = 0, and thus equation (3.1) possesses a bell-shaped
soliton solution

u11 = − β

3γ
+

(
10(2β3 + 27cγ 2 − 9αβγ )

27γ 3
sech2

(√
−6β3 − 81cγ 2 + 27αβγ

6γ
ξ

))1/3

, (3.31)

8
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Figure 3. The states of a triangular wave solution u12 (equation (3.33), where N2 = 0.2, ω =
2, n = 1, t = 0) at the x–z plane for (a) Q = 0.1, k = −1, (b) Q = −0.1, k = 1.

where it requires that 2β3 − 9γαβ + 27cγ 2 < 0; so this solution must satisfy the condition

5ρω2N2 − 4gnωQ < 0, (3.32)

which tells us that heating (Q > 0) helps to generate upward-propagating solitary waves, but
cooling (Q < 0) helps to generate downward-propagating solitary waves.

From equations (3.10) and (3.32), we see that heating (Q > 0) helps to generate westerly
propagating solitary waves if the slope of lines of constant phase is positive, and heating
(Q > 0) helps to generate easterly propagating solitary waves if the slope of lines of constant
phase is negative. However, cooling (Q < 0) helps to generate easterly propagating solitary
waves if the slope of lines of constant phase is positive, and cooling (Q < 0) helps to generate
westerly propagating solitary waves if the slope of lines of constant phase is negative.

A triangular solution

u12 = − β

3γ
+

(
10(2β3 + 27cγ 2 − 9αβγ )

27γ 3
sec2

(√
6β3 + 81cγ 2 − 27αβγ

6γ
ξ

))1/3

, (3.33)

where it requires that 2β3 − 9γαβ + 27cγ 2 > 0; so this solution must satisfy the condition

5ρω2N2 − 4gnωQ > 0, (3.34)

which tells us that heating (Q > 0) helps to generate downward-propagating waves, but
cooling (Q < 0) helps to generate upward-propagating waves.

From equations (3.10) and (3.34), it is not difficult to see that heating (Q > 0) helps to
generate easterly propagating waves if the slope of lines of constant phase is positive, and
heating (Q > 0) helps to generate westerly propagating waves if the slope of lines of constant
phase is negative. However, cooling (Q < 0) helps to generate westerly propagating waves if
the slope of lines of constant phase is positive, and cooling (Q < 0) helps to generate easterly
propagating waves if the slope of lines of constant phase is negative. The corresponding
propagating behaviour is given in figures 3 and 4.

A rational solution

u13 = − β

3γ
±

(
10

γ ξ 2

)1/3

, (3.35)

where it requires that 5ρω2N2 − 4gnωQ = 0, which shows that the heat term have nearly no
effect on the generation and propagation of internal gravity waves.

9
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Figure 4. Propagation of a triangular wave solution u12 (equation (3.33), where Q = −0.1, N2 =
0.2, ω = 2, n = 1) for (a) westerly (k = −1), (b) upward (k = 1), (c) easterly (k = 1),
(d) upward (k = −1).

When we take s = 3 and r = 5 in equation (1.3), namely making a transformation
ϕ → ϕ1/3 for equation (3.5), then equation (3.5) is reduced to

dϕ

dξ
= 3ε

√
c0ϕ4/3 + c1ϕ5/3 + c2ϕ2 + c3ϕ7/3 + c4ϕ8/3 + c5ϕ3. (3.36)

Suppose that c0 = c1 = c3 = c4 = 0; then equation (3.1) also have the same solitary wave
solutions as u11, u12 and u13.

3.2. The first-order ODE with an eighth-degree nonlinear term

With the aid of Maple9, substitution of equation (3.6) into equation (3.1) shows that the set of
algebraic equations possesses the solutions, as detailed in the following sections.

3.2.1. The first kind of solutions with a fifth-degree nonlinear term. The first set of solutions
reads

c0 = c0, c1 = c1, c2 = −c − βa2
0 − γ a3

0 − αa0,

c3 = −γ a2
0a1 − 2βa0a1

3
− αa1

3
, c4 = −γ a0a

2
1

2
− βa2

1

6
, c5 = −γ a3

1

10
, (3.37)

c6 = 0, c7 = 0, c8 = 0, a0 = a0, a1 = a1, a2 = 0,

where a1 �= 0, a0, c and c0 are arbitrary constants. In this case, its solutions have been studied
in section 3.1.

10
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3.2.2. The second kind of solutions with an eighth-degree nonlinear term. The second set of
solutions reads

c0 = 0, c1 = 0, c2 = − c

4
− βa2

0

4
− γ a3

0

4
− αa0

4
, c3 = 0,

c4 = −βa0a2

6
− γ a2

0a2

4
− αa2

12
, c5 = 0, c6 = −βa2

2

24
− γ a0a

2
2

8
, c7 = 0,

c8 = −γ a3
2

40
, a0 = a0, a1 = 0, a2 = a2, (3.38)

where ai(i = 0, 1, 2) and cj (j = 0, 1, . . . , 8) are arbitrary constants.
Then equation (3.6) takes in the form

dϕ

dξ
= ε

√
c2ϕ2 + c4ϕ4 + c6ϕ6 + c8ϕ8. (3.39)

Let us make a transformation ϕ → ϕ1/2 for equation (3.39); then equation (3.39) is
reduced to

dϕ

dξ
= 2ε

√
c2ϕ2 + c4ϕ3 + c6ϕ4 + c8ϕ5. (3.40)

If γ = 0 and we choose a0 = 0, then c2 = −c, c4 = −αa1
3 , c6 = − βa2

1
6 , and taking

equation (3.40) in the form

dϕ

dξ
= ε

√
c2ϕ2 + c4ϕ3 + c6ϕ4 (3.41)

which yields the following solitary wave solutions and triangular periodic wave solutions

u14 = 6cα sech2
(√−c

2 ξ
)

−2α2 + 3cβ − 6cβtanh
(√−cξ

2

)
+ 3cβtanh2

(√−cξ

2

) , c < 0, (3.42)

where it must satisfy Qngω − ρω2N2 > 0, it shows that heating helps to generate upward-
propagating waves, but cooling helps to generate downward-propagating waves. If the slope of
lines of constant phase is positive, heating helps to generate westerly propagating waves, and if
the slope of lines of constant phase is negative, heating helps to generate easterly propagating
waves. However, cooling helps to generate easterly propagating waves if the slope of lines
of constant phase is positive, and cooling helps to generate westerly propagating waves if the
slope of lines of constant phase is negative:

u15 = ∓ 6c sech(
√−cξ)√

(α2 − 6cβ) ± α sech(
√−cξ)

, α2 − 6cβ > 0, c < 0 (3.43)

u16 = − 6c sech2
(√−cξ

2

)
±2

√
α2 − 6cβ ∓ (

√
α2 − 6cβ ± α) sech2

(√−cξ

2

) , α2 − 6cβ > 0, c < 0,

(3.44)

u17 = − 6ccsch2
(√−cξ

2

)
±2

√
α2 − 6cβ ± (

√
α2 − 6cβ ± α)csch2

(√−cξ

2

) , α2 − 6cβ > 0, c < 0,

(3.45)

where the solutions (u15, u16 and u17) must satisfy the condition

2Q2g2n2 + 5QgnN2ρω − 7N4ρ2ω2 > 0, Qngω − ρω2N2 > 0, (3.46)

11
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Figure 5. Propagation direction of a solitary wave u17 (equation (3.45), where Q = 0.1, n = 1,
N2 = 0.2, ω = 2) for (a) westerly (k = −1), (b) upward (k = 1), (c) easterly (k = 1), (d) upward
(k = −1).

which tells us that heating tends to generate upward-moving waves, but cooling tends to
generate downward-moving waves. If the slope of lines of constant phase is positive, heating
tends to generate westerly moving waves, and if the slope of lines of constant phase is negative,
heating tends to generate easterly moving waves. However, cooling tends to generate easterly
moving waves if the slope of lines of constant phase is positive, and cooling helps to generate
westerly moving waves if the slope of lines of constant phase is negative. Figure 5 shows the
propagating behaviour of the positive branch of u17 in qualitative terms

u18 = − 6csec2
(√

cξ

2

)
±2

√
α2 − 6cβ ∓ (

√
α2 − 6cβ ± α)sec2

(√
cξ

2

) , α2 − 6cβ > 0, c > 0,

(3.47)

u19 = − 6ccsc2
(√

cξ

2

)
±2

√
α2 − 6cβ ± (

√
α2 − 6cβ ± α)csc2

(√
cξ

2

) , α2 − 6cβ > 0, c > 0,

(3.48)

where the solutions (u18 and u19) must satisfy the condition

2Q2g2n2 + 5QgnN2ρω − 7N4ρ2ω2 > 0, Qngω − ρω2N2 < 0, (3.49)

which tells us that under the influence of heating, wave fronts tend to be travelling downward;
if the slope of lines of constant phase is positive, wave fronts tend to be travelling in a positive
x-direction; and if the slope of lines of constant phase is negative, wave fronts tend to be
travelling in a negative x-direction. However, under the influence of cooling, wave fronts tend
to be travelling upward; if the slope of lines of constant phase is positive, wave fronts tend to
be travelling in a negative x-direction; and if the slope of lines of constant phase is negative,

12
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Figure 6. Propagation of wave u19 (equation (3.48), where Q = −0.1, n = 1, N2 = 0.2, ω = 2)
for (a) westerly (k = −1), (b) upward (k = 1), (c) easterly (k = 1), (d) upward (k = −1).

wave fronts tend to be travelling in a positive x-direction. Figure 6 shows the propagating
behaviour of the positive branch of u19 in qualitative terms.

If γ �= 0, when we make a transformation ϕ → ϕ2/3 for equation (3.40), then
equation (3.40) is reduced to

dϕ

dξ
= 3

2
ε
√

c2ϕ2 + c4ϕ8/3 + c6ϕ10/3 + c8ϕ4. (3.50)

Suppose that c4 = c6 = 0; then equation (3.1) also have the same solitary wave solutions as
u11, u12 and u13.

3.2.3. The third kind of solutions with an eighth-degree nonlinear term. The third set of
solutions reads

c1 = −a1
(−320βa0a

2
1a

2
2 + 20βa4

1a2 + 60γ a0a
4
1a2 − 3γ a6

1 − 480γ a2
0a

2
1a

2
2

− 160a2
1a

2
2α + 1920ca3

2 + 1920γ a3
0a

3
2 + 1920βa2

0a2
3 + 1920αa0a

3
2

)/(
7680a4

2

)
,

c2 = −(
320βa0a

2
1a

2
2 − 20βa4

1a2 − 60γ a0a
4
1a2 + 3γ a6

1 + 480γ a2
0a

2
1a

2
2 + 160a2

1a
2
2α

+ 640ca3
2 + 640γ a3

0a
3
2 + 640βa2

0a
3
2 + 640αa0a

3
2

)/(
2560a3

2

)
,

c3 = −a1
(
320βa0a

2
2 + 20βa2

1a2 + 60γ a0a
2
1a2 − 3γ a4

1 + 480γ a2
0a

2
2 + 160αa2

2

)
960a2

2

,

c4 = −64βa0a
2
2 + 44βa2

1a2 + 132γ a0a
2
1a2 + 3γ a4

1 + 96γ a2
0a

2
2 + 32αa2

2

384a2
,

c5 = −βa1a2

8
− 13γ a3

1

160
− 3γ a0a1a2

8
, c6 = −βa2

2

24
− 23γ a2

1a2

160
− γ a0a2

2

8
,

13



J. Phys. A: Math. Theor. 41 (2008) 145206 L Zi-Liang

c7 = −γ a1a
2
2

10
, c8 = −γ a3

2

40
, c0 = c0,

a0 = a0, a1 = a1, a2 = a2, (3.51)

where ai (i = 0, 1, 2) and cj (j = 0, 1, . . . , 8) are arbitrary constants. Considering the 11
parameters, we present some types of solutions in the following cases.

Case 1. If c7 = c8 = 0 in equation (3.6), then equation (3.6) becomes

dϕ

dξ
= ε

√
c0 + c1ϕ + c2ϕ2 + c3ϕ3 + c4ϕ4 + c5ϕ5 + c6ϕ6. (3.52)

By using the condition c7 = c8 = 0, we can obtain that a1 = 0, γ = 0, c1 = c3 = c5 = 0.

Suppose that c0 = 8c2
2

27c4
and c6 = c2

4
4c2

; then we can obtain a0 = −α±
√

3α2−12cβ

2β
. Then

equation (3.1) has a kink profile solution

u20 = −α ±
√

3α2 − 12cβ

2β
±

4(α2 − 4βc)tanh2
(± 1

12

√
6α2−24βc

β
ξ
)

β
√

3α2 − 12βc
(
3 + tanh2

(± 1
12

√
6α2−24βc

β
ξ
)) (3.53)

and a singular solution

u21 = −α ±
√

3α2 − 12cβ

2β
±

4(α2 − 4βc) coth2
(± 1

12

√
6α2−24βc

β
ξ
)

β
√

3α2 − 12βc
(
3 + coth2

(± 1
12

√
6α2−24βc

β
ξ
)) , (3.54)

where α2 − 4βc > 0 and β > 0 in equations (3.53) and (3.54); so the solutions must satisfy
condition (3.10), where the wave propagation directions have been studied in detail in
section (3.1).

A triangular periodic solution

u22 = −α ±
√

3α2 − 12cβ

2β
±

4(α2 − 4βc) tan2
(± 1

12

√
− 6α2−24βc

β
ξ
)

β
√

3α2 − 12βc
(
3 − tan2

(± 1
12

√
− 6α2−24βc

β
ξ
)) (3.55)

and a singular triangular periodic solution

u23 = −α ±
√

3α2 − 12cβ

2β
±

4(α2 − 4βc) cot2
(± 1

12

√
− 6α2−24βc

β
ξ
)

β
√

3α2 − 12βc
(
3 − cot2

(± 1
12

√
− 6α2−24βc

β
ξ
)) , (3.56)

where α2 − 4βc > 0 and β < 0 in equations (3.55) and (3.56) respectively; so the solutions
must satisfy the condition

Q2g2n2 + QgnN2ρω − 2N4ρ2ω2 > 0, N2 < 0, (3.57)

which tells us that in the unstable atmosphere (N2 < 0), heating (Q > 0) helps to generate
downward-propagating waves, but cooling (Q < 0) helps to generate upward-propagating
waves.

From equations (3.10) and (3.57), it is not difficult to see that in the unstable atmosphere
(N2 < 0), heating (Q > 0) helps to generate easterly propagating waves if the slope of lines
of constant phase is positive, and heating (Q > 0) helps to generate westerly propagating
waves if the slope of lines of constant phase is negative.

However, in the unstable atmosphere (N2 < 0), cooling (Q < 0) helps to generate
westerly propagating waves if the slope of lines of constant phase is positive, and cooling

14
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Table 1. The wave propagation direction from the local heating.

Solution type Stability Upward Downward Westerly Easterly ODE type

u1, u4 N2 > 0 Q > 0 Q < 0 Q · Sp > 0 Q · Sp < 0 ODE5, ODE8
u2, u5 N2 > 0 Q < 0 Q > 0 Q · Sp < 0 Q · Sp > 0 ODE5, ODE8
u11 – Q > 0 Q < 0 Q · Sp > 0 Q · Sp < 0 ODE5, ODE8
u12 – Q < 0 Q > 0 Q · Sp < 0 Q · Sp > 0 ODE5, ODE8
u14, u15, u16, u17 – Q > 0 Q < 0 Q · Sp > 0 Q · Sp < 0 ODE8
u18, u19 – Q < 0 Q > 0 – Q · Sp < 0 Q · Sp > 0 ODE8
u22, u23 N2 < 0 Q < 0 Q > 0 Q · Sp < 0 Q · Sp > 0 ODE8
u20, u21, u24, u25 N2 > 0 Q > 0 Q < 0 Q · Sp > 0 Q · Sp < 0 ODE8

(Q < 0) helps to generate easterly propagating waves if the slope of lines of constant phase is
negative.

If we suppose that h0 = 0 and c6 = c2
4

4c2
, then equation (3.1) has a kink profile solution

u24 = −α ±
√

3α2 − 12cβ

2β
± 3(α2 − 4βc)

2β
√

3α2 − 12βc

⎛
⎝1 + 3tanh

⎛
⎝±

√
2α2 − 8βc

β
ξ

⎞
⎠

⎞
⎠ (3.58)

and a singular solution

u25 = −α ±
√

3α2 − 12cβ

2β
± 3(α2 − 4βc)

2β
√

3α2 − 12βc

⎛
⎝1 + 3 coth

⎛
⎝±

√
2α2 − 8βc

β
ξ

⎞
⎠

⎞
⎠ , (3.59)

where α2 − 4βc > 0 and β > 0 in equations (3.58) and (3.59) respectively; so the solutions
must satisfy condition (3.10), where the wave propagation directions have been studied in
detail in section (3.1).

Case 2. If we take s = 5 and r = 8 in equation (1.3), namely making a transformation
ϕ → ϕ1/2 for equation (3.6), then equation (3.6) becomes

dϕ

dξ
= 2ε

√
c0ϕ + c1ϕ3/2 + c2ϕ2 + c3ϕ5/2 + c4ϕ3 + c5ϕ7/2 + c6ϕ4 + c7ϕ9/2 + c8ϕ5. (3.60)

Supposing that c1 = c3 = c5 = c7 = 0, equation (3.1) also has the same solitary wave solutions
as u11, u12 and u13.

4. Summary and discussions

We have extended Fan’s direct and unified algebraic method with symbolic computation to
the case when r > 4 by introducing a new transformation and successfully applied this to
investigate internal gravity waves in the atmosphere. The solutions of a first-order nonlinear
ordinary differential equation with a higher degree nonlinear term, such as with a fifth-degree
nonlinear term (ODE5) and an eighth degree nonlinear term (ODE8), are obtained, which
included periodic wave solutions associated with the Jacobin elliptic function and the bell-
shaped and kink profile solitary wave solutions. Most importantly, the propagation and
generation of gravity waves are affected by the local heating conditions; the results are listed
in table 1, where Sp = dz

dx
denotes the slope of lines of constant phase in the x–z plane,

Q · Sp > 0 denotes Q > 0 and Sp > 0 or Q < 0 and Sp < 0, and Q · Sp < 0 denotes Q > 0
and Sp < 0 or Q < 0 and Sp > 0.
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Except those considered in this paper, the proposed method is of great significance in
many fields in physics, mechanics, atmosphere and ocean, etc, and it is also readily applicable
to a large variety of other nonlinear evolution equations such as the generalized coupled
Hirota–Satsuma, coupled Schrödinger–KdV, (2+1)-dimensional dispersive long wave, (2+1)-
dimensional Davey–Stewartson equations, the (3+1)-dimensional Jimbo–Miwa equation, etc.
The details for these cases will be investigated in our future work.
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